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Inherently Safer Design and Green 
Engineering
• A common philosophy
– Eliminate hazards from the 

manufacturing process rather than 
controlling hazards

– Hazards to:
• People
• Environment
• Property
• Business
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New paradigm for the environment

• Traditional environmental approach
– “End of pipe” waste treatment
– “Waste minimization” – an advance, 

but we can go further
• Green chemistry and engineering
– Eliminate or dramatically reduce 

hazards to the environment
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Many of us learned this as children

• Dr. Suess – The Cat in the Hat 
Comes Back

• The message:
Once you get something dirty, the only way to get it clean is 
to make something else dirty.

The best way to keep the world clean is to not get it dirty to 
begin with.
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New paradigm for safety

• Traditional safety approach
– “Add on” safety features
• Prevent - alarms, safety interlocks, 

procedures, training
• Mitigate – sprinkler systems, water 

curtains, emergency response 
systems and procedures

• Inherently safer design
– Eliminate or significantly reduce 

process hazards
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Safety and the environment

• Safety – focus on immediate 
impacts of single events
– Impact on people
– Impact on property and business –

“Loss Prevention”
• These single events do cause both 

short and long term environmental 
damage as well
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Why are we interested in 
inherently safer design?
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Flixborough, England (1974)
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Pasadena, TX (1989)
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Relationship of green chemistry, 
engineering, and inherently safer 
design
• Green chemistry and engineering – broad 

consideration of many human and environmental 
impacts
– reaction paths, synthesis routes, raw materials and 

intermediates
– implementation of selected synthesis routes
– Requires fundamental knowledge of physical and 

chemical processes
• Inherently safer design – focus on “safety” incidents

– Immediate consequences of single events (fires, 
explosions, immediate effects of toxic material 
release)

– Includes consideration of chemistry as well as 
engineering issues such as siting, transportation, 
and detailed equipment design
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Inherently safer design, green 
chemistry, and green engineering
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History of inherently safer design

• Technologists have always tried to 
eliminate hazards
– Robert Stevenson – simplified controls for 

early steam locomotives (1820s)
– James Howden – in-situ manufacture of 

nitroglycerine for the Central Pacific 
Railroad (1867)

– Alfred Nobel – dynamite (1867)
– Thomas Midgely – CFC Refrigerants –

(1930) 
• Replacement for flammable (light 

hydrocarbons, ammonia) and toxic (ammonia, 
sulfur dioxide) refrigerants then in use
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Inherently safer design in the 
chemical industry
• Trevor Kletz, ICI, UK (1977)

– Jubilee Lecture to the UK Society of the 
Chemical Industry

– Reaction to Flixborough, England explosion
– Named the concept
– Developed a set of specific design principles 

for the chemical industry
– Later published - original paper referring to 

“Inherently Safer Design”
• Kletz, T. A. “What You Don't Have, Can't Leak.” 

Chemistry and Industry, 287-292, 6 May 1978.
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What is inherently safer design?

• Inherent - “existing in something as a 
permanent and inseparable element...”
– safety “built in”, not “added on”

• Eliminate or minimize hazards rather 
than control hazards

• More a philosophy and way of thinking 
than a specific set of tools and methods
– Applicable at all levels of design and 

operation from conceptual design to plant 
operations

• “Safer,” not “Safe”
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Hazard

• An inherent physical or chemical 
characteristic that has the potential for 
causing harm to people, the 
environment, or property (CCPS, 1992).

• Hazards are intrinsic to a material, or its 
conditions of use.

• Examples
– Phosgene - toxic by inhalation
– Acetone - flammable
– High pressure steam - potential energy due 

to pressure, high temperature
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To eliminate hazards:

• Eliminate the material
• Change the material
• Change the conditions of use



SACHE Faculty Workshop - September 200317

Chemical Process Safety 
Strategies
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Inherent

• Eliminate or reduce the hazard by 
changing the process or materials which 
are non-hazardous or less hazardous

• Integral to the product, process, or plant 
- cannot be easily defeated or changed 
without fundamentally altering the 
process or plant design

• EXAMPLE
– Substituting water for a flammable solvent 

(latex paints compared to oil base paints)
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Passive

• Minimize hazard using process or 
equipment design features which 
reduce frequency or consequence 
without the active functioning of 
any device

• EXAMPLE
– Containment dike around a 

hazardous material storage tank
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Active

• Controls, safety interlocks, automatic 
shut down systems

• Multiple active elements
– Sensor  - detect hazardous condition
– Logic device - decide what to do
– Control element - implement action

• Prevent incidents, or mitigate the 
consequences of incidents

• EXAMPLE
– High level alarm in a tank shuts automatic 

feed valve
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Procedural

• Standard operating procedures, 
safety rules and standard 
procedures, emergency response 
procedures, training

• EXAMPLE
– Confined space entry procedures
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Batch Chemical Reactor Example

• Hazard of concern – runaway 
reaction causing high temperature 
and pressure and potential reactor 
rupture
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Inherent

• Develop chemistry which is not 
exothermic, or mildly exothermic
– Maximum adiabatic exotherm 

temperature < boiling point of all 
ingredients and onset temperature of 
any decomposition or other 
reactions
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Passive

• Maximum adiabatic pressure for 
reaction determined to be 150 psig

• Run reaction in a 250 psig design 
reactor

• Hazard (pressure) still exists, but 
passively contained by the 
pressure vessel
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Active

• Maximum adiabatic pressure for 
100% reaction is 150 psig, reactor 
design pressure is 50 psig

• Gradually add limiting reactant with 
temperature control to limit 
potential energy from reaction

• Use high temperature and pressure 
interlocks to stop feed and apply 
emergency cooling

• Provide emergency relief system
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Procedural

• Maximum adiabatic pressure for 
100% reaction is 150 psig, reactor 
design pressure is 50 psig

• Gradually add limiting reactant with 
temperature control to limit 
potential energy from reaction

• Train operator to observe 
temperature, stop feeds and apply 
cooling if temperature exceeds 
critical operating limit
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Which strategy should we use?

• Generally, in order of robustness 
and reliability:
– Inherent
– Passive
– Active
– Procedural

• But - there is a place and need for 
ALL of these strategies in a 
complete safety program
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Inherently Safer Design 
Strategies
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Inherently Safer Design Strategies

• Minimize
• Moderate
• Substitute
• Simplify
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Minimize

• Use small quantities of hazardous 
substances or energy
– Storage
– Intermediate storage 
– Piping
– Process equipment

• “Process Intensification”
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Benefits

• Reduced consequence of incident 
(explosion, fire, toxic material 
release)

• Improved effectiveness and 
feasibility of other protective 
systems – for example:
– Secondary containment
– Reactor dump or quench systems
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Opportunities for process 
intensification in reactors
• Understand what controls chemical 

reaction to design equipment to 
optimize the reaction
– Heat removal
– Mass transfer
• Mixing
• Between phases/across surfaces

– Chemical equilibrium
– Molecular processes
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Semi-batch nitration process

Batch Reactor
~6000 gallons

Organic Substrate and
solvents pre-charge

Nitric acid gradual
addition

Catalyst (usually
sulfuric acid) feed

or pre-charge
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What controls the rate of this 
reaction?
• Mixing – bringing reactants into 

contact with each other
• Mass transfer – from aqueous 

phase (nitric acid) to organic phase 
(organic substrate)

• Heat removal
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CSTR Nitration Process

Product

Raw
Material
Feeds

Organic substrate
Catalyst
Nitric Acid

Reactor ~ 100 gallons
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Can you do this reaction in a pipe 
reactor?

Raw
Material
Feeds

Organic substrate
Catalyst
Nitric Acid

Cooled continuous
mixer/reactor
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How much progress have we made 
since this 16th Century gold plant?

From A. I. Stankiewicz and J. A. 
Moulijn, “Process Intensification:  
Transforming Chemical 
Engineering,” Chemical Engineering 
Progress 96 (1) (2000) 22-34.
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“Semi-Batch” solution 
polymerization

Large  (several
thousand gallons)

batch reactor

Solvent
Additives
Initial Monomer "Heel"

Monomer and
Initiator gradually
added to minimize

inventory of
unreacted material
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What controls this reaction

• Contacting of monomer reactants 
and polymerization initiators

• Heat removal
– Temperature control important for 

molecular weight control
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Tubular Reactor

Product Storage Tank

Initiator Static mixer pipe reactor (several
inches diameter, several feet long,

cooling water jacket)

Monomer, solvent, additives
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Reducing the size of an emulsion 
reactor

5000 liter
(~1300 gallons)
batch reactor

Water
Soap and Additives
Initial Monomer "Heel"

Monomer and
Iniator Feeds
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Loop Reactor - Emulsion 
Polymerization 

Water
Phase

Solution
Tank

Monomer
Bulk

Storage

Hold
Tank

Break
Tank

Cooling
Tank

Product
Storage

Tank

Metering Pump

Loop
Reactor

Circulation
Pump

Strainer

Cooling Tank 
“Reactor” Volume

~ 50 liters

(~13 gallons)
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Good engineering makes existing 
chemistry “Greener”
• Chlorination reaction – traditional stirred tank 

reactor
• Mixing and mass transfer limited

– Chlorine gas à liquid reaction mixture à solid 
reactant particle à rapid reaction

• Loop reactor – similar design to polymerization 
reactor in previous slide
– Reduce:

• Chlorine usage from 50% excess to stoichiometric
• Reactor size by 2/3
• Cycle time by ¾
• Sodium hydroxide scrubber solution usage by 80% 
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We can do better!

From E. H. Stitt, “Alternative multiphase reactors for fine chemicals:  A world 
beyond stirred tanks,” Chemical Engineering Journal 90 (2002) 47-60.

Why so many batch stirred tank reactors?
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Scale up
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Scale out
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On-demand phosgene generation

• Reported by Ciba-Geigy/Novartis Crop 
Protection in 1996/1998

• Continuous process to produce phosgene
• Phosgene consumers are batch processes
• No phosgene storage
• Engineering challenges

– Rapid startup and shutdown
– Quality control 
– Instrumentation and dynamic process control
– Disposal of “tail gas” and inerts
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Substitute

• Substitute a less hazardous 
reaction chemistry

• Replace a hazardous material with 
a less hazardous alternative
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Substitute materials

• Water based coatings and paints in 
place of solvent based alternatives
– Reduce fire hazard
– Less toxic
– Less odor
– More environmentally friendly
– Reduce hazards for end user and 

also for the manufacturer
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Substitution - Refrigeration

• Many years ago (pre-1930)
– Toxic, flammable refrigerants

• Ammonia, light hydrocarbons, sulfur dioxide
• Quantity – often several kilograms

• Inherently safer alternative (1930s)
– CFCs

• Discovery of environmental problems (1980s)
– “Green” alternatives include light 

hydrocarbons
– Require re-design of home refrigerators to 

minimize quantity of flammable hydrocarbon 
(currently as little as 120 grams of hydrocarbon 
refrigerant)
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Reaction Chemistry - Acrylic 
Esters

• Acetylene - flammable, reactive
• Carbon monoxide - toxic, flammable
• Nickel carbonyl - toxic, environmental 

hazard (heavy metals), carcinogenic
• Anhydrous HCl - toxic, corrosive
• Product - a monomer with reactivity 

(polymerization) hazards

RCHCO=CH 
HCl

 )Ni(CO 
 ROH + CO + CHCH 22

4 !º

Reppe Process
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Alternate chemistry

• Inherently safe?
• No, but inherently safer. Hazards are 

primarily flammability, corrosivity from 
sulfuric acid catalyst for the esterification 
step, small amounts of acrolein as a 
transient intermediate in the oxidation step, 
reactivity hazard for the monomer product.

2 3 2 2 2 2CH = CHCH  +  
3
2 O  

 Catalyst 
 

 CH = CHCO H +  H O!

2 2

+

2 2 2CH = CHCO H +  ROH 
 H  

 
 CH = CHCO R +  H O!

Propylene Oxidation Process
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By-products and side reactions

• Organic intermediate production
– Intended reaction - hydrolysis 
Organic raw material + sodium hydroxide --->

product + sodium salt
• Reaction done in ethylene dichloride 

solvent
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Hazardous side reaction

• Sodium hydroxide + ethylene 
dichloride solvent:

• The product of this reaction is vinyl 
chloride (health hazard)

• A different solvent 
(perchloroethylene) was used

OH + NaCl + ClHC  
     NaOH + ClHC 232242 !
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The next step – “Green” but 
inherently safer?
• Replace perchloroethylene with a biodegradable 

hydrocarbon
• Reactants and products are highly soluble in 

chlorinated hydrocarbon solvents
• Chlorinated hydrocarbon solvents are relatively 

inert in all reaction steps
• New engineering problems with “green” solvent

– Reduced solubility (solids handling, coating of 
heat transfer surfaces, fouling and plugging, 
mixing and fluidity problems)

– Solvent can react exothermically with reactants 
in some process steps

– These hazards can be managed, but the 
engineering is not INHERENT
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Moderate

• Dilution
• Refrigeration
• Less severe processing conditions
• Physical characteristics
• Containment
– Better described as “passive” rather 

than “inherent”
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Dilution

• Aqueous ammonia instead of 
anhydrous

• Aqueous HCl in place of anhydrous 
HCl

• Sulfuric acid in place of oleum
• Wet benzoyl peroxide in place of 

dry
• Dynamite instead of nitroglycerine
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Effect of dilution
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Impact of refrigeration

Monomethylamine
Storage

Temperature
(°C)

Distance to
ERPG-3 (500 ppm)

Concentration,
km

10 1.9
3 1.1
-6 0.6
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Less severe processing conditions

• Ammonia manufacture
– 1930s - pressures up to 600 bar
– 1950s - typically 300-350 bar
– 1980s - plants operating at pressures 

of 100-150 bar were being built
• Result of understanding and 

improving the process
• Lower pressure plants are cheaper, 

more efficient, as well as safer
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Simplify

• Eliminate unnecessary complexity 
to reduce risk of human error
– QUESTION ALL COMPLEXITY! Is it 

really necessary?
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Simplify - eliminate equipment

• Reactive distillation methyl acetate 
process (Eastman Chemical)

• Which is simpler?

Reactor

Splitter
Extractive
Distillaton

Solvent
Recovery

Methanol
Recovery

Extractor

Azeo
Column

Decanter

Flash
Column

Color
Column

Flash
Column

Water

Water

Heavies

Methyl
Acetate

Water

Catalyst
Methanol
Acetic Acid

Reactor
Column

Impurity
Removal
Columns

Water

Heavies

Acetic Acid

Methanol

Sulfuric
Acid

Methyl
Acetate
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Modified methyl acetate process

• Fewer vessels
• Fewer pumps
• Fewer flanges
• Fewer instruments
• Fewer valves
• Less piping
• ......
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But, it isn’t simpler in every way

• Reactive distillation column itself is 
more complex

• Multiple unit operations occur 
within one vessel

• More complex to design
• More difficult to control and 

operate
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Single, complex batch reactor

Condenser

Distillate
Receiver

Refrigerated
Brine

Large
Rupture

Disk

A

B

C

D

E

Condensate

Water Supply

Steam

Water Return
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A sequence of simpler batch reactors 
for the same process

A

B

C

D

E

Distillate
Receiver

Condenser

Water Supply

Water Return

Refrigerated
Brine

Steam

Condensate

Large Rupture
Disk
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Inherent safety conflicts

• In the previous example
– Each vessel is simpler

• But
– There are now three vessels, the 

overall plant is more complex in 
some ways

– Compare to methyl acetate example
• Need to understand specific 

hazards for each situation to 
decide what is best
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Conflicts and Tradeoffs
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Some problems

• The properties of a technology which 
make it hazardous may be the same as 
the properties which make it useful
– Airplanes travel at 600 mph
– Gasoline is flammable

• Any replacement for gasoline must have one 
similar characteristic - the ability to store a 
large quantity of energy in a compact form
– a good definition of a hazardous situation

– Chlorine is toxic
• Control of the hazard is the critical issue 

in safely getting the benefits of the 
technology
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Multiple hazards
• Everything has multiple hazards
– Automobile travel
• velocity (energy), flammable fuel, 

exhaust gas toxicity, hot surfaces, 
pressurized cooling system, 
electricity......

– Chemical process or product
• acute toxicity, flammability, 

corrosiveness, chronic toxicity, 
various environmental impacts, 
reactivity.......
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What does inherently safer mean?

• Inherently safer is in the context of 
one or more of the multiple hazards

• There may be conflicts
– Example - CFC refrigerants
• low acute toxicity, not flammable
• potential for environmental damage, 

long term health impacts
• Are they inherently safer than 

alternatives such as propane 
(flammable) or ammonia (flammable 
and toxic)?



SACHE Faculty Workshop - September 200372

Inherently safer hydrocarbon 
based refrigerators?
• Can we redesign the refrigeration 

machine to minimize the quantity of 
refrigerant sufficiently that we 
could still regard it as inherently 
safer?
– Home refrigerators – perhaps (<120 

grams)
– Industrial scale applications –

probably not, need to rely on 
passive, active, procedural risk 
management strategies



SACHE Faculty Workshop - September 200373

• What is the hazard of concern…
…if you live on top of a hill in Philadelphia?
…if you live on the ocean front at the shore?

• Which is inherently safer?
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Multiple impacts

• Different populations may perceive the inherent 
safety of different technology options differently

• Example - chlorine handling - 1 ton cylinders vs. 
a 90 ton rail car
– What if you are a neighbor two miles away?

• Most likely would consider the ton cylinder 
inherently safer

– What if you are an operator who has to connect 
and disconnect cylinders 90 times instead of a 
rail car once?
• Most likely would consider the rail car inherently 

safer
• Who is right?
• How can you measure relative risks?
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Inherently safer = safer
• Air travel

– several hundred people
– 5 miles up
– control in 3 dimensions
– 600 mph
– thousands of gallons of 

fuel
– passengers in a 

pressure vessel
– .........

• Automobile travel
– a few people
– on the ground
– control in 2 dimensions
– 60 mph
– a few gallons of fuel

– might even be a 
convertible

– .........

! Automobile travel is inherently safer
! But, what is the safest way to travel from 
Washington to Los Angeles?
! Why?
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Inherently safer design – at what 
stage in development and design
• Use acrylate manufacture as an 

example
– Basic technology 
• Reppe process vs. propylene oxidation
• Other alternatives?

– Implementation of selected 
technology
• Catalyst options (temperature, 

pressure, selectivity, impurities)
– Propylene oxidation step
– Esterification step
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Inherently safer design – at what 
stage in development and design
• Acrylate manufacture example
– Plant design
• Plant location
• Plant layout on site (location relative to 

people, property, environmentally 
sensitive locations)
• Equipment size

– Storage of raw materials
– One large train vs. multiple smaller trains
– …..
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Inherently safer design – at what 
stage in development and design
• Acrylate manufacture example
– Detailed equipment design
• Inventory of hazardous material
• Heat transfer media (temperature, 

pressure, fluid)
• Pipe size, length, construction 

(flanged, welded, screwed pipe)
• Leak potential of equipment
• ….
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Inherently safer design – at what 
stage in development and design
• Acrylate manufacture example
– Operation
• “User friendly” operating procedures
• Management of change

– consider inherently safer options when 
making modifications

– Identify opportunities for improving 
inherent safety based on operating 
experience, improvements in technology 
and knowledge
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At what level of design should 
engineers consider inherently 
safer design?

• My answer – at all levels!
• Inherently safer design is not a meeting, 

or a review session.
• Inherently safer design is a way of 

thinking, a way of approaching 
technology design at every level of detail 
– part of the daily thought process of a 
chemist, engineer, or other designer as 
he goes about his work.
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Questions a designer should ask 
when he has identified a hazard

In this order
1. Can I eliminate this hazard?
2. If not, can I reduce the magnitude of the 

hazard?
3. Do the alternatives identified in questions 1 

and 2 increase the magnitude of any other 
hazards, or create new hazards?

(If so, consider all hazards in selecting the best 
alternative.)

4. At this point, what technical and management 
systems are required to manage the hazards 
which inevitably will remain?
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Better may be harder to invent

“There are two ways of dealing with 
this problem:  one is complicated 
and messy, and the other is simple 
and elegant. We don’t have much 
time left, so I’ll show you the 
complicated and messy way.”

- Richard P. Feynman
Nobel Prize winning physicist, 

discussing approaches to 
understanding a physics problem
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The future of inherently safer 
design
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Inherently safer design

• Some hazardous materials and processes can be 
eliminated or the hazards dramatically reduced.

• The useful characteristics of other materials or 
processes make their continued use essential to 
society for the foreseeable future.
– Continue to manage risks
– Similar to air travel – we understand the hazards, 

but the activity is so essential to our way of life 
that we will continue to fly. We will put up with, 
and pay for, the active and procedural design 
features required to maintain acceptable safety 
and security.
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What is needed to promote 
inherently safer design?
• Research
– Chemical engineering technology
• Process intensification
• Physical and chemical phenomena
• Novel energy sources
• Biological and biochemical synthesis
• Catalysis

– Chemistry
• Green chemistry – safer synthesis routes 

considering raw materials, 
intermediates, products, reaction 
conditions, solvents and by-products… 
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What is needed to promote 
inherently safer design?
• Measurement
– Consideration of all hazards
– Different tools at different levels of 

design
• Simple, fast, high level tools for early 

evaluation of alternative technologies
– Relative importance of conflicting 

hazards transparent to decision maker
– Decision tools for inherently safer 

design and green chemistry and 
engineering
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What is needed to promote 
inherently safer design?
• Education of chemists, engineers, 

all technologists
– Inherently safer design is the way 

they think
• How many good ideas are lost 

because they are not pursued? The 
inherent safety/green benefits are not 
recognized.

– First focus on eliminating and 
reducing hazards rather than 
managing and controlling them


